DCMX

Matrix type Cold Work Die Steel

DC-Matrix is a matrix type cold work tool steel. Only fine carbides are distributed in matrix due to optimum alloy design and production process.

Features

DIE PERFORMANCE

- **High hardness** such as 62HRC is available by high temperature tempering with good dimensional stability, resulting in high wear resistance.
- **High toughness** contributes to prevent cracking and chipping.

EASE IN DIE MAKING

- Minimal Dimensional change when tempered at 500 degrees C.
- Machinability is improved by free machining additives and finely dispersed carbides.

Main applications

PUNCHES, DIES AND WORKING TOOLS FOR COLD PRESSING AND COLD FORGING COLD STAMPING DIES FOR HIGH STRENGTH STEELS.

- Cold stamping dies for high strength steels
- Insert blocks for composite stamping dies
- Blanking punches and trimming edges

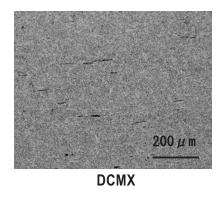
Chemistry

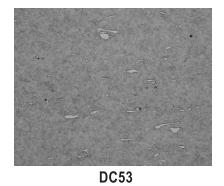
PATENT PENDING

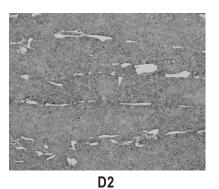
Heat treatment

Forging	Treating temperature (°C)				Hardness	
Temp. (°C)	Annealing	Quenching	Tempering	Stabilizing treatment	Annealed	Quenched & tempered
900 — 1160	870 — 930 Slow cooling	1000-1050 Air cooling	Low: 150 - 200 High: 480 - 560 Air cooling More than twice	400°C for longer than 1h	≦ 235HB	56∼62HRC

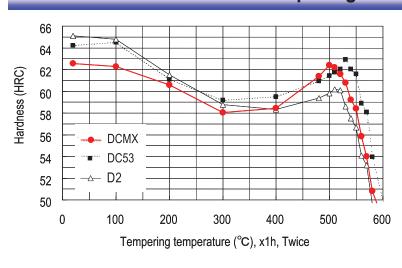
DCMX is distributed by International Mold Steel, Inc., A Daido partner company

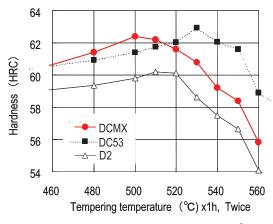


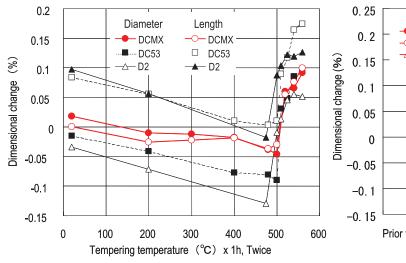

6796 Powerline Dr. • Florence, KY • 41042 1-800-625-6653 • Web: www.imsteel.com

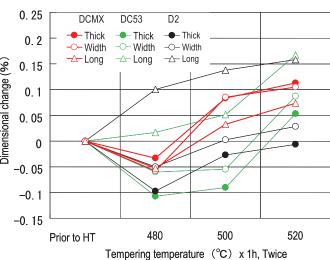

Properties

Optical micrographs (As annealed)


DCMX shows fine microstructure almost free from coarse carbides

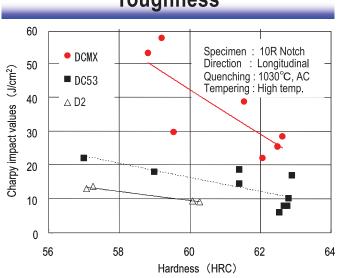


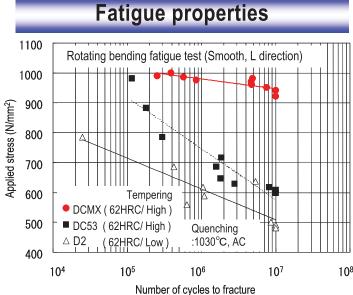

Tempering hardness



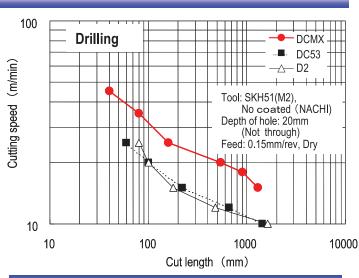
Specimen: 15mm Cubic, Quenching: 1030°C, AC

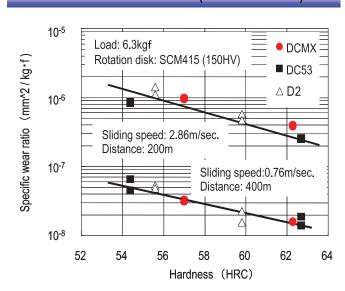
Dimensional stability



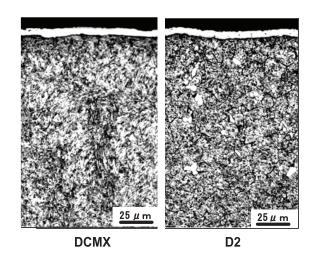

Specimen: 10mm dia. x 50mm Long Quenching: 1030°C, AC

Specimen: 50mm Thick x 100mm Width x150mm Long Quenching: Atmosphere furnace, 1030°C, Fan AC


Properties Toughness



(Annealed)


Machinability 500 **Endmilling** 450 Tool: VP15TF(Mitsubishi) 400 32dia. Single tooth, Max.Flank wear (μ m) 350 Down cut Cut: 1mm width, 4mm height 300 Speed: 150m/min. 250 Feed: 0.15mm/rev. Coolant: Air blowing 200 150 **DCMX** 100 DC53 -∆-- D2 -50 0 1000 10000 100000 Cut length (mm)

Wear resistance (Ohkoshi-test)

TD coating

TD coating: By courtesy of DOWA Thermo Engineering.

CCT diagrams 1000 DCMX DC53 900 **DC11** 800 Temperature (°C) 700 600 500 400 300 200 100 761 746 746 705 438 768 0 10 100 1000 Time (min.) When cooled from 1030C(1886F) to 500C (932F) within 40min.,

Physical properties

◆Thermal expansion rate (x10-6/K. Ave.value from 20°C)

V 111011	nai oxpai	ioioii iat	0 (7(10 /1	(110 111, 1110.111100 110111 20 0)			
100°C	200°C	300°C	400°C	500°C	600°C	700°C	
13.3	13.7	14.0	14.4	14.7	14.9	14.9	

◆Thermal conductivity (W/m·K [cal/cm·sec·°C])

RT	100°C	200°C	300°C	400°C	500°C
17.1	18.8	20.9	22.6	24.0	25.7
[0.0409]	[0.0449]	[0.0499]	[0.0540]	[0.0573]	[0.0614]

◆Specific heat (J/kg·K)

•		(0 , 1.19				
RT	100°C	200°C	300°C	400°C	500°C	
507	535	570	611	654	719	

- ◆ Young modulus = 202 GPa
- ◆ Specific weight = 7.67 g/cm³
- Heat treating of specimens

Quenching: 1030°C, AC, Tempering: 500°C, Twice

13C/min. (23F/min.) form 1886F to 932F.

A Martensitic matrix is obtained free from pearlite structure.

To obtain high enough hardness as quenched, cool down to the Ms temperature (180°C) within 60 min.

Comparison of properties among Daido cold work die steels

	Properties	DCMX	DC53	D2
Low temp.(200°C)		61 HRC	61 HRC	61 HRC
Tempering	High temp.(500°C)	62 HRC	60 HRC	58 HRC
hardness	Hightemp.(520°C)	60 HRC	62 HRC	58 HRC
Isotropy		0	0	Δ
Dimensiona	I change with time*1	O(O)	Δ(Ο)	O(O)
Hardneability		0	0	0
Toughness		0	0	Δ
Fatigue properties		0	0	Δ
Machinability		0	0	Δ
Wear resistance		0	0	0
Wear resistance to sand		Δ	0	0
Wire EDM *2		0	0	0
Low temp. coating *2		0	0	0

^{*1} Comparison by dimensional change when stabilizing treated △: Average, ○: Good ⊚: Excellent Highlighted are especially featured properties

^{*2} Comparison by the decrease in hardness when tempered at 520°C for wire EDM and PVD coating

